
Network Traffic Analysis,
Aggregation, Anomaly
Detection and Prediction With
Apache Kafka, Apache Spark
and InfluxDB

/September 2017/

Solution

High-level design

Working prototype design

Implementation

Results

Possible applications

Application guidelines

3

3

3

4

5

5

6

8

9

9

10

Problem

Initial description

Properties of the data flow

Data processing requirements

CONTENT

Network Traffic Analysis, Aggregation, Anomaly Detection
and Prediction With Apache Kafka, Apache Spark and InfluxDB

2

At Bitworks we design and develop comprehensive software systems. Given a
sophisticated app domain, we elaborate the most appropriate architecture for
the problem by building a feasible proof of concept using reliable open-source
components. The resulting solution offers maximum compliance with industry
standards and meets reliability, performance, and security requirements.

Initial description

One of our customers operates a large computer network.
In order to maintain its healthy infrastructure, it is necessary
to properly monitor all network activity, analyze traffic flows,
and predict eventual problems.

However, even having been condensed by standardized
statistical techniques (sFlow), the flow of the data is still
too big and raw to store and analyze without preliminary
processing.

We were assigned the task to design a scalable distributed
system for aggregating, enriching, and analysing large streams
of network data.

PROBLEM

Patterns discovered in packet
streams can form the basis
for future network redesign
and hardware upgrades, while
abnormal changes in packet
distribution may indicate
hardware failure or malicious
behaviour and thus demand a
timely response

Properties of the data flow

While designing the system, we accepted the following
assumptions about the data:

 Data flow is continuous.

 Data is time-based. Each sample has a timestamp
and samples are produced in the order corresponding
to the timestamps.

 Data is raw. Part of its fields can be safely discarded
for some analysis problems, while some should be
enriched with external data.

 Data has many fields, both dimensional and metric.
This allows the data to be partitioned and subsequently
aggregated by some of its field values.

 Data is sampled. Statistical nature of the data
and of the target metrics makes occasional
reprocessing of the same values not an issue
in the long run.

3Network Traffic Analysis, Aggregation, Anomaly Detection
and Prediction With Apache Kafka, Apache Spark and InfluxDB

http://www.sflow.org

Data processing requirements

Given the data as described above, the system needs
to process it in a time window as follows:

 Discard unnecessary data fields.

 Rename data fields as needed.

 Create new data fields by enriching, performing basic
operations (addition, subtraction, multiplication, division)
on other fields, and naming the result.

 Aggregate metric data fields by some key dimensions
with one of the aggregation operations (max/min, sum,
count, unique count etc).

The resulting data is usually more compact and so it is easier
to store. Nevertheless, it is still time-based and multidimensional,
so it needs a specific type of database for storing and querying.

The database needs to be optimized
for the following operations:

 Inserting records for the recent period of time (the order
of the inserts might not necessarily correspond to the order
of the record timestamps).

 Reading ordered records for a continuous period
of time, filtered by one or more dimension fields.

 Deleting records for a continuous period of time
after the expiration of the retention period.

The processed data needs to be analysed in order to:

 Detect and report anomalies and patterns.

 Predict trends.

Analysis should be performed alongside the data flow by making use
of the historical data from the database. Specific analysis techniques
to be performed are not known in advance, so the system needs
to support user-defined analysis modules.

In addition, a visual analysis tool is needed for graphical display
of the historical data.

The resulting system must be scalable and easily deployable.

4Network Traffic Analysis, Aggregation, Anomaly Detection
and Prediction With Apache Kafka, Apache Spark and InfluxDB

High-level design

In accordance with the requirements we needed
the following components for our system:

 Streaming platform for sequencing and
partitioning incoming data.

 Stream processing platform for performing
transformation and analysis.

 Time series database for storing resulting data
and providing data access for analysis.

 Visual monitoring tool.

 Alert delivery system.

We designed the following high level architecture.

SOLUTION

Stream pipeline Processor Database Visualiser

Consumes

Stores

Provides

Stores

Alert manager

Transforms

Aggregates

Analyses

Alerts

Cache

5Network Traffic Analysis, Aggregation, Anomaly Detection
and Prediction With Apache Kafka, Apache Spark and InfluxDB

Working prototype design

We decided to build a working prototype to test
if the architecture would meet our client’s needs.
For the individual components we have chosen as follows:

 Python 3 as the development language.
Python 3 is an open-source programming language

with large contribution from data science community.
It is one of the few languages supported by Spark,
along with Java and Scala. This choice was determined
by customer’s preferences.

 Kafka for pipelining initial streams of data.
Apache Kafka is an open-source distributed

streaming platform often used in tandem with Spark.
It collects events from multiple sources, stores them
in a fault-tolerant way and guarantees at-least-once
processing of the data. It supports multiple independent
consumers and provides means for flexible scalable
configuration of data partitions in relation to the structure
of possible data sources and data consumers.

 Spark for processing data.
Apache Spark is an open-source distributed data

processing platform which has become de facto standard
for solving big data problems. It provides a unified model
for processing data sets and data streams in a similar
manner. Its API is available in the Python programming
language and has methods for transforming and aggregating
data as well as a large library of machine learning algorithms
for data analysis.

 InfluxDB for storing data. InfluxDB is an open-source
distributed database for storing time series. It is highly
optimized for storing and accessing multidimensional
time-based data, it surpasses many of its competitors
in terms of performance, and is currently ranked #1 by
popularity among other time series databases according
to DB-Engines Ranking.

 Grafana for visualizing data. Grafana is an open-source
monitoring and analytics platform which provides a variety
of ways to visually present time-based data, including many
third-party plugins. It has built-in support for InfluxDB
(with interactive query builder and other features),
as well as for many other data sources.

 Docker for the application deployment.
Docker is an open-source platform for building, shipping

and running distributed applications. Docker allows flexible
configuration for multicomponent systems, and guarantees
correct execution regardless of the deployment target.
InfluxDB and Grafana have official docker images, while
docker image for Kafka is supported by the community.

 Kafka for alert forwarding.

6Network Traffic Analysis, Aggregation, Anomaly Detection
and Prediction With Apache Kafka, Apache Spark and InfluxDB

https://www.python.org
https://kafka.apache.org
https://spark.apache.org
https://www.influxdata.com
https://db-engines.com/en/ranking/time+series+dbms
https://grafana.com
https://www.docker.com

Kafka Spark InfluxDB Grafana

We already had experience working with these components
in different combinations, so we decided to test their feasibility
for the architecture above.

Apache Kafka – streaming platform

Apache Spark – distributed data
processing platform

InfluxDB – time series database

Grafana – monitoring and analysis
platform

Docker – deploying platform

Python – programming language

Apache License 2.0

Apache License 2.0 for manual deployment

Apache License 2.0

License

ToS for SaaS

ToS for SaaS

Software License Subscription Agreement
for SaaS and/or scalability

Component License

Apache License 2.0

MIT License for manual deployment

Consumes

Stores

Provides

Forwards alerts

StoresTransforms

Aggregates

Analyses

Alerts

Cache

7Network Traffic Analysis, Aggregation, Anomaly Detection
and Prediction With Apache Kafka, Apache Spark and InfluxDB

https://github.com/apache/kafka/blob/trunk/LICENSE
https://github.com/grafana/grafana/blob/master/LICENSE.md
https://www.docker.com/components-licenses
https://docs.python.org/3/license.html
https://www.influxdata.com/legal/terms-of-use/
https://grafana.com/terms/msa
https://github.com/apache/spark/blob/master/LICENSE
https://github.com/influxdata/influxdb/blob/master/LICENSE

Implementation

We developed a Python application which runs
on a Spark cluster.

First and foremost it connects to the Kafka server as
a consumer using options provided by a configuration file.

Then it processes every batch of the data sent
by Kafka in two steps:

1. It transforms the data rows:

 Selects data fields relevant to the problem at hand.

 Renames data fields if necessary.

 Performs basic arithmetic operations
(addition, subtraction, multiplication, division).

 Performs GeoIP transformations (country, city, ASN).

Nested transformations and user-defined transformation
modules are not supported in the current prototype.

2. It aggregates data fields using one of the following
aggregation functions:

 Sum, returns sum of all values.

 Mult, returns product of all values.

 Max, returns the largest value.

 Min, returns the smallest value.

Aggregation is possible after grouping data rows
by some key field (or a combination of fields),
as well as for the whole data batch.

Specifics of the transformation and aggregation steps are not
predefined and can be specified in the configuration file by the DSL.

The processed data is then stored in InfluxDB.

The data is analyzed by built-in as well as by user-defined analysis
modules. The modules query historical data from InfluxDB, analyze
it for deviations, and send out notifications when anomalies are
detected.

The current prototype allows sending alerts to a separate Kafka
instance and/or topic.

Every user-defined module is
a Python 3 package containing
a class implementing the
module interface. The package
should be supplied alongside
the application and its name
and initialization parameters
should be specified in the
configuration file. A single
module can be specified
more than once.

8Network Traffic Analysis, Aggregation, Anomaly Detection
and Prediction With Apache Kafka, Apache Spark and InfluxDB

An elaborate description of the
prototype design is available at

GitHub repository.

https://github.com/morbidlizard/kafka-spark-influx-csv-analysis/tree/master/diagrams

Guided by the high-level architecture and our choice
of components, we developed a working prototype,
which has proved the approach to be viable for quantitative
and statistical analysis of network traffic in sFlow format.
The prototype is open-source under Apache License v2
and is available for everyone at GitHub. It can be used
as is for analyzing any kinds of CSV data streams in terms
of the operations described above.

RESULTS

Possible applications

We believe that a similar approach might be applied
for other problems where stream-oriented aggregation
and analysis are needed. Possible fields of application
include but are not limited to:

Telecommunications

 Network load monitoring

 DDoS attack detection and prediction

Devops

 Hardware monitoring

 Log monitoring

Finances

 Stock market monitoring

 Portfolio tracking

9Network Traffic Analysis, Aggregation, Anomaly Detection
and Prediction With Apache Kafka, Apache Spark and InfluxDB

Transport

 Traffic control

 Taxi order service

Internet of things

 Climate control

 Smart city

 Manufacturing and production operations

Software development

 Application usage

 Malware detection

https://github.com/bwsw/kafka-spark-influx-csv-analysis/blob/master/LICENSE
https://github.com/bwsw/kafka-spark-influx-csv-analysis

Additional measures need
to be taken to ensure
idempotence of the data
operations, both at the
consuming and the producing
ends of the application.

Kafka 0.11 provides
means to ensure exactly-
once processing for both its
producers and consumers.
The system will also need
to ensure idempotence of
inserting the transformed
data into the data storage.

Application guidelines

The proposed architecture will probably be viable
for big data problems where:

 There are many automated events in time (counter readings,
data packages, messages, etc.) that require to be monitored
and analyzed.

 The data is time-based and has a distinct partitioning
by certain criteria.

 The data needs to be transformed before being processed
and stored.

 It is necessary to detect unexpected behaviour, to discover
trends, and to predict future states of the data.

 The data needs to be aggregated, in order for the data
storage to avoid additional scaling.

 Apache Spark is already a part of the solution.

 The computations to be performed are tolerant to occasional
duplicate values in the case of a hardware failure.

10Network Traffic Analysis, Aggregation, Anomaly Detection
and Prediction With Apache Kafka, Apache Spark and InfluxDB

Viability of the architecture for specific problems
in the aforementioned domains should be verified on a case-
by-case basis. If you want to try it for yourself, we would really
appreciate your feedback. Following are some guidelines to help
you decide if it is worth your effort.

The architecture will not be viable if:

 Real-time monitoring with low latency is required.
The use of the Spark Streaming framework enforces
batching of the events, so that the response time cannot
be less than the batch window.

 The problem needs an exact numerical solution. In the case
of hardware failure some data may be processed more
than once, which would lead to incorrect results. Additional
measures need to be taken to ensure idempotence
of the data operations, both at the consuming and the
producing ends of the application. Kafka 0.11 provides
means to ensure exactly-once processing for both its
producers and consumers. The system will also need
to ensure idempotence of inserting the transformed data
into the data storage.

 The data is not big. It might not need aggregating and
scaling capabilities provided by the architecture, and
a simpler solution might suffice.

 Complicated analysis is not needed. InfluxDB provides
basic facilities for transforming and aggregating data, while

Kapacitor can be used for running simple anomaly
detection checks. Grafana can still be used for online data
monitoring.

InfluxDB with Grafana
might be a better
combination for this case.

https://archive.apache.org/dist/kafka/0.11.0.0/RELEASE_NOTES.html
https://archive.apache.org/dist/kafka/0.11.0.0/RELEASE_NOTES.html
https://www.influxdata.com/time-series-platform/kapacitor/

Sergey Krickiy

Development team leader

Denis Ryabokon

Developer

Nikolai Bogoslovskiy

Developer

Vyacheslav Podberezhnyy

Project manager

Valentin Rakhimov

System analyst

13A Shishkova St,
Tomsk, 634050, Russia

+7 (382) 2 70 54 77

30 Regent St,
Jersey City, NJ 07302, USA

+1 929 402 8251

Hamburg, Germany

+49 (040) 5 48 91 029

CONTRIBUTORS

info@bw-sw.com

https://bitworks.software

Network Traffic Analysis, Aggregation, Anomaly Detection
and Prediction With Apache Kafka, Apache Spark and InfluxDB

11

